

多模高阶涡旋光的光束漂移实验研究

吴冉,陈君*,傅钢坤

中国计量大学光学与电子科技学院,浙江杭州 310018

摘要 光束漂移会造成涡旋光功率波动和闪烁,是影响自由空间光通信、传感以及远距离成像的一个重要因素。 通过调控多模涡旋态和模拟扰动环境,实验研究了非相干叠加和相干叠加多模涡旋光的漂移现象。通过测量轨道 角动量(OAM)谱中信号 OAM 模式的功率波动和闪烁指数,发现高阶涡旋光束比低阶涡旋光束具有更优的抗功率 波动和抗闪烁表现;多模涡旋光束优于单模涡旋光束;非相干叠加的多模高阶涡旋光束优于相干叠加的多模高阶 涡旋光束。对比实验的结果表明:相较于其他几种涡旋光束,非相干叠加的多模高阶涡旋光束具有最优的抗闪烁 和抗功率波动能力,更适合在光束漂移的扰动环境中使用。所得研究结果对基于涡旋光的远距离传输和通信具有 重要参考价值。

关键词 物理光学;涡旋光;光束漂移;闪烁指数;功率波动;相干性 中图分类号 O436 **文献标志码** A

doi: 10.3788/AOS202242.0426001

Experimental Study of Multi-Mode High-Order Vortex Beam Wander

Wu Ran, Chen Jun^{*}, Fu Gangkun

College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang 310018, China

Abstract Beam wander causes power fluctuation and scintillation of optical vortex beams and is important in the fields of optical free space communication, sensing, and long-distance imaging. In this paper, beam wander of multi-mode vortex beams with incoherent superposition and coherent superposition is studied experimentally by controlling the multi-mode vortex states and simulated perturbations. After measuring the power fluctuation and scintillation index of orbital angular momentum (OAM) mode in the OAM spectrum, we find that the high-order vortex beams have a better anti-power-fluctuation and anti-scintillation performance than the low-order vortex beams; the multi-mode vortex beams perform better than the single-mode vortex beams; the incoherently superposed multi-mode high-order vortex beams perform better than the coherently superposed high-order multi-mode vortex beams results show that the incoherently superimposed multi-mode high-order vortex beams have a best anti-scintillation and anti-power-fluctuation ability over other types of vortex beams, and might be suitable for the use in a beam wander disturbed environment. The results can be helpful for the application of vortex beams in the field of long-distance transmission and communication.

Key words physical optics; vortex light; beam wander; scintillation index; power fluctuation; coherence

1引言

涡旋光具有轨道角动量(OAM),其波前具有螺旋结构 $\exp(iL\theta)$,其中 θ 为方位角(取值为 $0\sim 2\pi$),

L 为拓扑荷。对于L 阶涡旋光,每个光子携带大小 为 Lh 的 OAM^[1],其中, h 为约化普朗克常数。 OAM 作为光子具备的一个独立物理量,构成一组 希尔伯特空间完备集,理论上可为信息交换提供无

收稿日期: 2021-08-02; 修回日期: 2021-08-14; 录用日期: 2021-08-27

基金项目:浙江省之江实验室重大科研项目(2019DE0KF01)

通信作者: *chenjun. sun@cjlu. edu. cn

限维度^[2-4]。但在远距离传输过程中,大气湍流带来的光束漂移会对涡旋光的 OAM 信号模产生破坏^[5-8]。研究涡旋光在光束漂移中发生的现象,有助于掌握涡旋光在湍流环境中的传输和演化特点,对自由空间光通信和远距离成像具有重要意义^[9-11]。

闪烁指数和功率波动是判断光束受漂移影响的 重要指标^[12]。光束在大气传输过程中,湍流扰动、 光束的束腰半径,传输距离,以及光束的相干性都会 影响闪烁指数和功率波动[13-14]。文献[14]报道了大 气扰动下单模涡旋光可以有效地减小光强的波动, 且高阶单模涡旋光降低闪烁指数的效果更为明显。 文献「15-16]提出了空间模式分解和多路复用的方 案来提高光束抗湍流的能力。多模高阶涡旋光在经 历大气传输时,其抗光束漂移的能力更强。相对于 单模涡旋光,多模高阶涡旋光在光通信和量子信息 中具有更广阔的应用前景[17-19]。但目前大部分研究 工作都是针对相干叠加方式产生的多模高阶涡旋光 进行。相干叠加产生的多个 OAM 模式之间具有确 定的相位关系,彼此之间可以发生干涉。事实上,多 路 OAM 模式的复用也可以利用非相干叠加的方式 来实现^[20-22]。揭示多模高阶涡旋光的产生方式对其 抗湍流效果的影响规律是非常重要的。

本文提出了一种产生相干叠加和非相干叠加多 模高阶涡旋光的实验方法,通过研究多模叠加方式 对光束漂移的影响,发现非相干叠加方式产生的多 模高阶涡旋光在光束漂移过程中具有更小的闪烁指 数和功率波动。实验结果还显示,多模高阶涡旋光 比单模高阶涡旋光的闪烁指数和功率波动更小。本 文的研究结果有助于克服或减小湍流引起的光束退 化,为涡旋光的多模复用提供了新的调控方法和 手段。

2 非相干叠加和相干叠加多模涡旋 光的设计

本文将利用光束漂移模型^[23],通过非相干叠加 和相干叠加的方式生成多路 OAM 复用的多模高阶 涡旋光。以径向指数为零的拉盖尔-高斯光为例,该 光束可表示为

$$U(x, y, L) = w_0^{-|L|} (\sqrt{x^2 + y^2})^{|L|} \times \exp\left(-\frac{x^2 + y^2}{w_0^2}\right) \exp(iL\theta), \qquad (1)$$

式中:U(x,y,L)为径向指数为零的拉盖尔-高斯 [LG(0L)]光场; $\theta = \arctan(y/x)$ 为方位角; w_0 为光 斑宽度。为了构造出单模态和多模态涡旋光,本文

第 42 卷 第 4 期/2022 年 2 月/光学学报

采用基于计算全息(CGH)的多光束阵列方法^[24]。 其具体步骤是:首先利用 CGH 构造大量具有不同 扰动中心的离轴涡旋子光束 U(x-a_j,y-b_j,L), 其中(a_j,b_j)为子光束扰动中心坐标,下标 j 为子光 束在阵列中的编号。控制这些子光束的附加相位, 可使它们相干叠加^[25]。该叠加场复振幅的数学表 达为

$$E_k(x, y, L) = \sum_{j=1}^{N} U(x - a_j, y - b_j, L) \exp(i\phi_j),$$
(2)

式中:N 为子光束阵列的数量, $N = 500; \phi_j$ 为附加 相位,其值在 $0 \sim 2\pi$ 之间随机分布;叠加场 E_k 为某 时刻漂移扰动涡旋光的复振幅表达式,下标 k 为该 时刻的编号。本文利用一系列叠加场($E_k, k = 1$, $2, \dots, N_k$)来构造涡旋光束的时域漂移现象,其中 N_k 为正整数。在本文中, $N_k = 800$ 。由于漂移扰动 破坏光束时间相干性, 不同时刻的光场间没有关联。 因此,本文设计每个叠加场 E_k 独立产生, 彼此之间 没有关联, 即 $\langle E_k^*(x, y, L) E_p(x, y, L) \rangle |_{k \neq p} = 0$, 其中, * 表示共轭, 下标 p 为不同时刻的编号。

设计子光束的扰动中心(*a_j*,*b_j*)在光束横截面 内的高斯随机分布为

$$f(a_j, b_j) \propto \frac{1}{\pi C^2} \exp[-(a_j^2 + b_j^2)/C^2],$$
 (3)

式中: $f(a_j, b_j)$ 为 (a_j, b_j) 的概率分布函数;非负实数 C为一个扰动参数,用于限定子光束扰动中心的分布范围。叠加场[(2)式]的空间相干性由参数 C控制:如果 $C \rightarrow 0$,此时光束是完全相干光;如果 $C > w_0$,此时光束是低相干光束。

基于(2)式所构建的单模涡旋光,通过非相干叠 加和相干叠加方式可产生不同的多模涡旋光。以3 个 OAM 模式复用为例,本文用 L₁,L₂,L₃分别对 应 3 个 OAM 模式的拓扑荷。相干叠加多模态涡旋 光场为

$$E_{k, \text{coh}}(x, y) = \sum_{j=1}^{N} [U(x - a_j, y - b_j, L_1) \exp(i\phi_{j1}) + U(x - a_j, y - b_j, L_2) \exp(i\phi_{j2}) + U(x - a_j, y - b_j, L_3) \exp(i\phi_{j3})], \quad (4)$$

式中:下标 coh 表示相干叠加。非相干叠加多模态 涡旋光场为

$$E_{k,\text{inc}}(x,y) = E_{k}(x,y,L_{1}) + E_{k}(x,y,L_{2}) + E_{k}(x,y,L_{3}), \qquad (5)$$

式中:下标 inc 代表非相干叠加,其中

$$E_{k}(x, y, L_{1}) = \sum_{j=1}^{N} U(x - a_{j1}, y - b_{j1}, L_{1}) \exp(i\phi_{j1}),$$
(6)

$$E_{k}(x, y, L_{2}) = \sum_{j=1}^{N} U(x - a_{j2}, y - b_{j2}, L_{2}) \exp(i\phi_{j2}),$$
(7)

$$E_{k}(x, y, L_{3}) = \sum_{j=1}^{N} U(x - a_{j3}, y - b_{j3}, L_{3}) \exp(i\phi_{j3}),$$
(8)

式中: $\phi_{j_1}, \phi_{j_2}, \phi_{j_3}$ 为彼此独立的随机相位; (a_{j_1}, b_{j_1}) , $(a_{j_2}, b_{j_2}), (a_{j_3}, b_{j_3})$ 为3个独立扰动的中心坐标。

探测器在 k 时刻获得的瞬时光强为

$$I_{k}(x,y) = E_{k}^{*}(x,y)E_{k}(x,y)_{\circ}$$
(9)

为简单起见,瞬时光强表达式中省略了代表非 相干叠加和相干叠加的光场 E 的上标。探测器在 一段探测时间内对待测光束的强度进行多次采样, 通过非相干叠加可获得平均光强为

$$\langle I(x,y) \rangle = \frac{1}{M} \sum_{k=1}^{M} I_k(x,y),$$
 (10)

式中: *M* 为在探测时间内探测器对光束采样的次数,本文取 *M* <> *N*_k。则待测光束的闪烁指数可表示为^[14]

$$m^{2}(x,y) = \frac{\langle I^{2}(x,y) \rangle - \langle I(x,y) \rangle^{2}}{\langle I(x,y) \rangle^{2}}, \quad (11)$$

利用(11)式可获得相干叠加和非相干叠加多模涡 旋光束在光束漂移中的闪烁指数。利用待测光束在光 束漂移中功率最大值与最小值之间的差值^[16],可以获 得不同多模涡旋光束信号 OAM 模式的功率波动。

3 功率波动和闪烁指数的测量

3.1 实验装置

通过探测待测光束信号 OAM 模的功率波动和 闪烁指数,本文将研究不同扰动参数下的相干叠加 和非相干叠加多模涡旋光的光束漂移情况。

本文的光源制备方案是:利用空间光调制器 (SLM)和 CGH 设计制备单模涡旋光、相干叠加和 非相干叠加多模涡旋光;利用 CCD 相机记录和监测 待测光束的平均光强分布。在测量方面,本文利用 第 2 个 SLM(SLM2)对待测光束的模式进行筛选, 并利用光功率计(OPM)测量待测涡旋光中信号 OAM 模的瞬时功率。对 OPM 探测到的实时功率 进行记录,使用(11)式可计算闪烁指数,利用功率的 最大值与最小值之间的差值可得到功率波动。

本文搭建的实验装置如图1所示。氦氖激光器 (波长λ=633 nm,2 mW 线偏振光)产生波长稳定 且与 SLM1(相位调制型,1280 pixel×720 pixel,像 素大小为 6.3 μm, HDSLMM63R 型)偏振匹配的线 偏振光。SLM1的液晶屏幕以每秒50帧的帧频播 放预先准备的 CGH 序列。利用(2)、(4)、(5)式预 先制备了单模涡旋光、相干叠加多模涡旋光和非相 干叠加多模涡旋光的光束漂移 CGH 各 800 帧。 SLM1 和 SLM2 使用的 CGH 如图 2(a) 所示。激光 器出射的线偏振光入射到 SLM1 并被反射。其一 级衍射光为(2)、(4)、(5)式所示的涡旋光场。 SLM1 的一级衍射光被分束器(BS)分为两条路径: 透射光路和反射光路。反射光路中的 CCD 相机用 于观察待测涡旋光的光强分布。透射光路中的 SLM2 和 OPM 用于筛选待测涡旋光中的特定 OAM 模式^[26],记录瞬时功率。设置 SLM2 的液晶 屏的 CGH,使其筛选拓扑荷为 S 的 OAM 模式,如 图 2(b) 所示。SLM2 筛选的模式即为信号 OAM 模。待测光束射入 SLM2 后,拓扑荷为 S 的 OAM 模式将产生一级衍射光并被OPM接收。由于 OPM 对环境中的杂散光比较敏感,实验过程须保 持光照环境恒定。CCD 相机和 OPM 之前的孔径光 阑(CA1、CA2)用于滤除入射杂光。

Fig. 1 Experimental setup for measuring power fluctuation and scintillation index

图 2 SLM1 和 SLM2 使用的 CGH。(a) SLM1 使用的 CGH 序列由 N_k(N_k=800)帧构成, 可产生两种叠加模式的多模涡旋光;(b) SLM2 使用的 CGH 可产生拓扑荷为 S 的 OAM 模光场 Fig. 2 CGHs used by SLM1 and SLM2. (a) CGH sequence used by SLM1 is composed of N_k(N_k=800) frames, which can produce multi-mode vortex beams in two superposition modes; (b) CGH used by SLM2 can generate OAM mode light field with topological charge of S

本文采用 SLM1 结合 CGH 设计制备出拓扑荷 L=0,3,6 的单模涡旋光和多模涡旋光L(-1,0,1),L(2,3,4),L(5,6,7)。实验中,初始光斑宽度 $w_0=0.1575$ mm。在制备多模涡旋光时,本文采用 了相干叠加和非相干叠加两种方式[(4)、(5)式]。 为了模拟光束漂移效应,在 SLM1 的 CGH 的制备 过程中,本文加入了随机相位 φ_i 和随机扰动中心 $(a_j, b_j), 见(2),(3) 式。设置扰动参数 C 为$ $<math>0.5w_0, 1.2w_0, 3w_0, 对比不同扰动影响下涡旋光的$ 闪烁指数和功率波动。本文采用 SLM2 进行待测 光束的 OAM 模式筛选^[26]。SLM2 的出射光进入 OPM 后,可以读取信号 OAM 模式下 S=0,3,6 对 应的功率。

3.2 结果分析

图 3 为不同扰动参数 C 下单模和非相干叠加 多模涡旋光的平均光强图。可见,在光束漂移影响 下,单模和非相干叠加多模涡旋光在传播后都会发 生畸变;随着扰动参数的增大,光束光强畸变程度随 之增大。图 4 为单模和非相干叠加多模涡旋光的实 时功率对比图。观察可见,单模涡旋光[图 4(a)]比 非相干叠加多模涡旋光[图 4(b)]的功率波动更大。 在时间轴上,非相干叠加多模涡旋光的平均功率比 单模涡旋光更稳定。这些现象与早期报道相吻 合^[16,27-28]。

图 3 单模涡旋光和非相干叠加多模涡旋光的平均光强图。(a)单模涡旋光;(b)非相干叠加多模涡旋光 Fig. 3 Averaged light intensity diagrams of single-mode and incoherently superposed multi-mode vortex beams. (a) Single-mode vortex beams; (b) incoherently superposed multi-mode vortex beams

图 5 给出了单模涡旋光和非相干叠加、相干叠 加的多模涡旋光的功率波动,横坐标代表扰动参数 *C*,纵坐标代表功率波动,*L*_{inc}代表非相干涡旋光束 的拓扑荷, L_{coh} 代表相干涡旋光束的拓扑荷。 图 5(a)的信号 OAM 模 S=0,图 5(b)的信号 OAM 模 S=3,图 5(c)的信号 OAM 模 S=6。由

图 4 单模涡旋光和非相干叠加多模涡旋光的实时功率对比图。(a)单模涡旋光(L=3); (b)非相干叠加多模涡旋光(L=2,3,4)

Fig. 4 Real-time power comparison diagrams of single-mode and incoherently superposed multi-mode vortex beams. (a) Single-mode vortex beam (L=3); (b) incoherently superposed multi-mode vortex beam (L=2,3,4)

图 5 单模与两种多模涡旋光的功率波动。(a)信号 OAM 模 S=0 的功率波动;(b)信号 OAM 模 S=3 的功率波动;(c)信号 OAM 模 S=6 的功率波动;(d)不同拓扑荷的单模涡旋光功率波动;(e)不同拓扑荷的非相干叠加的多模涡旋光功率波动;(f)不同拓扑荷的相干叠加的多模涡旋光功率波动

Fig. 5 Power fluctuation of single-mode vortex beam and two types of multi-mode vortex beams. (a) Power fluctuation of signal OAM mode S=0; (b) power fluctuation of signal OAM mode S=3; (c) power fluctuation of signal OAM mode S=6; (d) single-mode vortex power fluctuation with different topological charges; (e) incoherently superposed multi-mode vortex power fluctuation with different topological charges; (f) coherently superposed multi-mode vortex power fluctuation with different topological charges

图 5(a)~(c)可以看出,随着扰动参数 C 的增大,单 模和两种多模涡旋光的功率波动增大。在相同扰动 和相同信号 OAM 模下,两种多模涡旋光的功率波 动均小于单模涡旋光的功率波动;非相干叠加多模 涡旋光的功率波动小于相干叠加多模涡旋光的功率 波动。如图 5(b)所示,信号 OAM 模 S=3 在相同 扰动参数 C=0.5w。下的功率波动呈现单模、相干 叠加多模、非相干叠加多模涡旋光依次降低的趋势。

研究论文

由图 5(d)~(f)可以看出,在相同扰动参数 C 下,随 着拓扑荷的增大,单模和两种多模涡旋光的功率波 动均会减小。例如,在相同扰动参数 C=0.5w₀下, 观察单模 L=0,3,6 时,纵坐标数值随 L 的增加而 降低,相干叠加的多模和非相干叠加的多模也呈现 相同的规律。

图 6 给出单模涡旋光和非相干叠加、相干叠加 的多模涡旋光的闪烁指数。闪烁指数描述了光束

第 42 卷 第 4 期/2022 年 2 月/光学学报

在扰动下光强相对起伏的程度。闪烁指数越大说 明光束受扰动的影响越大。图 6 所体现出闪烁指 数的规律与功率波动的规律一致。从图 6 中观察 到,随着扰动参数 C 的增大,单模和两种多模涡旋 光的信号 OAM 模闪烁指数均增大。其原因是:扰 动越大,产生的光强起伏越大。从图 6 中还可以 观察到,相同扰动参数下,信号 OAM 模的拓扑荷 数值越大,其闪烁指数越小。其原因是:相同扰动 下,高阶涡旋光具有的 OAM 更大,因此对扰动 OAM 的抵御能力更强。图 6 还显示,在相同扰动 参数和拓扑荷下,信号 OAM 模的闪烁指数从大到 小依次为单模涡旋光、相干叠加多模涡旋光、非相 干叠加多模涡旋光。这与从图 5 中观察到的漂移 扰动对不同涡旋光束功率起伏的影响规律是一致 的。这体现了不同涡旋光束对扰动抵御能力的 区别。

图 6 单模与两种多模涡旋光的闪烁指数。(a)信号 OAM 模 S=0 的闪烁指数;(b)信号 OAM 模 S=3 的闪烁指数;(c)信 号 OAM 模 S=6 的闪烁指数;(d)不同拓扑荷的单模涡旋光的闪烁指数;(e)不同拓扑荷的非相干叠加多模涡旋光的 闪烁指数;(f)不同拓扑荷的相干叠加多模涡旋光的闪烁指数

Fig. 6 Scintillation indexes of single-mode vortex beam and two types of multi-mode vortex beams. (a) Scintillation index of signal OAM mode S=0; (b) scintillation index of signal OAM mode S=3; (c) scintillation index of signal OAM mode S=6; (d) scintillation index of single-mode vortex beams with different topological charges; (e) scintillation index of incoherently superposed multimode vortex beams for different topological charges; (f) scintillation index of coherently superposed multimode vortex beams for different topological charges

扰动参数对信号 OAM 模的功率波动和闪烁指 数产生影响,其本质是漂移扰动使涡旋光束 OAM 谱发生畸变。在扰动作用下,涡旋光束的螺旋波前 被破坏,其 OAM 谱发生改变。信号 OAM 模在畸 变 OAM 谱中的占比也会因此而改变,这也是图 4 中信号 OAM 模的实时功率在扰动下出现起伏的原 因。扰动参数 C 越大,漂移扰动对波前的破坏越严 重,涡旋光束 OAM 谱的畸变程度越大,这也是从图 5 和图 6 中观察到单模和多模涡旋光信号 OAM 模 的功率波动和闪烁指数均会随 C 的增加而增大的 原因。虽然,单模涡旋光和多模涡旋光的 OAM 谱 都会在扰动下发生改变,但是不同涡旋光束 OAM 谱的畸变程度是有区别的。从图 5 和图 6 中观察到 漂移扰动对单模涡旋光功率波动以及闪烁指数的影 响更大。

本文还研究了相同扰动下,单模涡旋光和两种多 模涡旋光在不同传输距离 z 下的闪烁指数。实验中, 传输距离 z 是指 SLM1 至 SLM2 的距离。由图 7 可 观察到,距离对 3 种光束的闪烁指数产生了影响。z 从 30 cm 增加到 40 cm 后,闪烁指数变大。z 增加到 50 cm 后,闪烁指数下降。闪烁指数下降的原因是: 在 SLM2 上设置了数字式光阑用于空间滤波。z 从 40 cm 增加到 50 cm 后,射入 SLM2 的光斑增大到该 光阑区以外;受该光阑的影响,待探测光束的闪烁指

数并未随距离的增加继续增加,而是出现了下降。从 图 7 中可见:单模涡旋光束的闪烁指数受距离的影响 最大,相干叠加的多模涡旋光束次之,非相干叠加多 模态涡旋光束受距离的影响最小。随着拓扑荷的增 大,相干叠加的多模涡旋光和非相干叠加的多模涡旋 光在抗闪烁能力上的区别逐渐减小。

图 7 3种涡旋光束在不同传输距离下的闪烁指数。(a)信号 OAM 模 S=0 的闪烁指数随 z 的变化; (b)信号 OAM 模 S=3 的闪烁指数随 z 的变化;(c)信号 OAM 模 S=6 的闪烁指数随 z 的变化

Fig. 7 Scintillation indexes of three types of vortex beams for different propagation distances. (a) Scintillation index of signal OAM mode S = 0 for different z; (b) scintillation index of signal OAM mode S = 3 for different z;
(c) scintillation index of signal OAM mode S = 6 for different z

4 结 论

提出了相干叠加和非相干叠加多模高阶涡旋光 的产生方法。通过搭建简单的实验装置,本文研究 了单模、相干叠加和非相干叠加多模涡旋光的漂移 效应。结果表明,在相同漂移扰动下,多模涡旋光比 单模涡旋光具有更小的闪烁指数和功率波动,高阶 涡旋光比低阶涡旋光具有更小的闪烁指数和功率波 动。多模高阶涡旋光的产生方式对其抗湍流效果具 有较大影响。非相干叠加的多模高阶涡旋光具有更 小的闪烁指数和功率波动。非相干叠加的多模高阶 涡旋光在湍流环境中具有更强的鲁棒性。

参考文献

- Krenn M, Malik M, Erhard M, et al. Orbital angular momentum of photons and the entanglement of Laguerre-Gaussian modes [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 375 (2087): 20150442.
- [2] Shen Y J, Wang X J, Xie Z W, et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities[J]. Light: Science & Applications, 2019, 8: 90.
- [3] Padgett M J. Orbital angular momentum 25 years on [Invited] [J]. Optics Express, 2017, 25(10): 11265-11274.
- [4] Ke X Z, Xie Y C, Zhang Y. Orbital angular momentum measurement of vortex beam and its performance improvement [J]. Acta Optica Sinica, 2019, 39(1): 0126017.
 柯熙政,谢炎辰,张颖. 涡旋光束轨道角动量检测及

其性能改善[J]. 光学学报, 2019, 39(1): 0126017.

- [5] Andrews L C, Phillips R L. Laser beam propagation through random media [M]. Bellingham: SPIE, 2005.
- [6] Yu J Y, Zhu X L, Wang F, et al. Experimental study of reducing beam wander by modulating the coherence structure of structured light beams [J]. Optics Letters, 2019, 44(17): 4371-4374.
- [7] Liu X L, Wang F, Wei C, et al. Experimental study of turbulence-induced beam wander and deformation of a partially coherent beam [J]. Optics Letters, 2014, 39(11): 3336-3339.
- [8] Yang S K, Wang X Y, Zhao L, et al. Wander of anomalous vortex beams propagating through anisotropic atmospheric turbulence [J]. Laser Technology, 2021, 45(2): 252-258.
 杨盛凯, 王晓艳,赵亮,等.反常涡旋光束在各向异 性大气湍流中的漂移[J].激光技术, 2021, 45(2): 252-258.
- [9] Wang F, Liu X L, Cai Y J. Propagation of partially coherent beam in turbulent atmosphere: a review[J]. Progress in Electromagnetics Research, 2015, 150: 123-143.
- [10] Zheng G. Coherent property evolution of partially coherent elliptical vortex beam propagation through turbulence[J]. Laser & Optoelectronics Progress, 2021, 58(9): 0901001.
 郑国.部分相干椭圆涡旋光在湍流下的相干特性演化[J].激光与光电子学进展, 2021, 58(9): 0901001.
- [11] Nan J H, Han Y P. Dual-channel multiband vortex optical communication[J]. Acta Optica Sinica, 2021, 41(12): 1206001.

南久航,韩一平.双路多进制涡旋光通信[J].光学

学报, 2021, 41(12): 1206001.

- Kaushal H, Kumar V, Dutta A, et al. Experimental study on beam wander under varying atmospheric turbulence conditions [J]. IEEE Photonics Technology Letters, 2011, 23(22): 1691-1693.
- [13] Andrews L C, Phillips R L, Hopen C Y, et al. Theory of optical scintillation [J]. Journal of the Optical Society of America A, 1999, 16(6): 1417-1429.
- [14] Chen Z, Li C, Ding P, et al. Experimental investigation on the scintillation index of vortex beams propagating in simulated atmospheric turbulence[J]. Applied Physics B, 2012, 107(2): 469-472.
- [15] Li L, Song H Q, Zhang R Z, et al. Increasing system tolerance to turbulence in a 100-Gbit/s QPSK free-space optical link using both mode and space diversity [J]. Optics Communications, 2021, 480: 126488.
- [16] Wang A D, Zhu L, Deng M L, et al. Experimental demonstration of OAM-based transmitter mode diversity data transmission under atmosphere turbulence[J]. Optics Express, 2021, 29(9): 13171-13182.
- [17] Gao Y, Fu S Y, Zhang S K, et al. Research on generation of high-order vortex beams [J]. Optical Technique, 2017, 43(2): 114-117.
 高衍,付时尧,张世坤,等.高阶涡旋光束生成技术 研究[J]. 光学技术, 2017, 43(2): 114-117.
- [18] Willner A E, Huang H, Yan Y, et al. Optical communications using orbital angular momentum beams[J]. Advances in Optics and Photonics, 2015, 7(1): 66-106.
- [19] Krenn M, Malik M, Erhard M, et al. Orbital angular momentum of photons and the entanglement

of Laguerre-Gaussian modes [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 375 (2087): 20150442.

- [20] Piquero G, Santarsiero M, Martínez-Herrero R, et al. Partially coherent sources with radial coherence [J]. Optics Letters, 2018, 43(10): 2376-2379.
- [21] Chen J, Li Y. Discrimination of incoherent vortex states of light [J]. Optics Letters, 2018, 43(22): 5595-5598.
- [22] Kai C H, Feng Z K, Dedo M I, et al. The performances of different OAM encoding systems [J]. Optics Communications, 2019, 430: 151-157.
- [23] Cook R J. Beam wander in a turbulent medium: an application of Ehrenfest's theorem[J]. Journal of the Optical Society of America, 1975, 65(8): 942-948.
- [24] Liu M J, Chen J, Zhang Y, et al. Generation of coherence vortex by modulating the correlation structure of random lights [J]. Photonics Research, 2019, 7(12): 1485-1492.
- [25] Perez-Garcia B, Yepiz A, Hernandez-Aranda R I, et al. Digital generation of partially coherent vortex beams [J]. Optics Letters, 2016, 41 (15): 3471-3474.
- [26] Pinnell J, Nape I, Sephton B, et al. Modal analysis of structured light with spatial light modulators: a practical tutorial[J]. Journal of the Optical Society of America A, 2020, 37(11): C146-C160.
- [27] Yu J, Huang Y, Wang F, et al. Scintillation properties of a partially coherent vector beam with vortex phase in turbulent atmosphere [J]. Optics Express, 2019, 27(19): 26676-26688.
- [28] Vasnetsov M V, Pas'ko V A, Soskin M S. Analysis of orbital angular momentum of a misaligned optical beam[J]. New Journal of Physics, 2005, 7: 46.